Argininosuccinate synthase

Argininosuccinate synthase
Crystallographic structure of human argininosuccinate synthetase.[1]
Identifiers
EC number 6.3.4.5
CAS number 9023-58-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Argininosuccinate synthetase 1
Identifiers
Symbol ASS1
Entrez 445
HUGO 758
OMIM 603470
RefSeq NM_000050
UniProt P00966
Other data
EC number 6.3.4.5
Locus Chr. 9 q34.1
Argininosuccinate synthetase
crystal structure of thermus thermophilus hb8 argininosuccinate synthetase in complex with atp and citrulline
Identifiers
Symbol Arginosuc_synth
Pfam PF00764
Pfam clan CL0039
InterPro IPR001518
PROSITE PDOC00488
SCOP 1kp2

Argininosuccinate synthase (ASS) (EC 6.3.4.5) is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate

ASS is responsible for the third step of the urea cycle and one of the reactions of the citrulline-NO cycle.

Contents

Gene

The gene that encodes for this enzyme, ASS, is located on chromosome 9. In humans, ASS is expressed mostly in the cells of liver and kidney.

Pathology

Citrullinemia: At least 50 mutations that cause type I citrullinemia have been identified in the ASS gene. Most of these mutations substitute one amino acid for another in ASS. These mutations likely affect the structure of the enzyme and its ability to bind to citrulline, aspartate, and other molecules. A few mutations lead to the production of an abnormally short enzyme that cannot effectively play its role in the urea cycle.

Defects in ASS disrupt the third step of the urea cycle, preventing the liver from processing excess nitrogen into urea. As a result, nitrogen (in the form of ammonia) and other byproducts of the urea cycle (such as citrulline) build up in the bloodstream. Ammonia is toxic, particularly to the nervous system. An accumulation of ammonia during the first few days of life leads to poor feeding, vomiting, seizures, and the other signs and symptoms of type I citrullinemia.

Treatment for this defect includes a low-protein diet and dietary supplementation with arginine and phenylacetate. Arginine allows the urea cycle to complete itself, creating the substrates needed to originally fix ammonia. This will lower blood pH. Additionally, phenylacetate reacts with backed-up glutamine, resulting on phenylacetoglutamine, which can be excreted renally.[2]

References

  1. ^ PDB 2nz2; Karlberg T, Collins R, van den Berg S, Flores A, Hammarström M, Högbom M, Holmberg Schiavone L, Uppenberg J (March 2008). "Structure of human argininosuccinate synthetase". Acta Crystallogr. D Biol. Crystallogr. 64 (Pt 3): 279–86. doi:10.1107/S0907444907067455. PMID 18323623. 
  2. ^ Devlin, Thomas M. (2002). Textbook of biochemistry: with clinical correlations. New York: Wiley-Liss. pp. 788. ISBN 0-471-41136-1. 

See also

External links